Linearly ordered Splitting families

Osvaldo Guzmán

Joint work with David Chodounsky

January 30, 2017

Introduction

Let S and X be infinite subsets of ω . We say that S splits X if $S \cap X$ and $X \setminus S$ are both infinite. A family $S \subseteq [\omega]^{\omega}$ is called an *splitting family* if for every $X \in [\omega]^{\omega}$ there is $S \in S$ such that S splits X. We will say a family is *linearly ordered* if it is linearly ordered under the almost inclusion (recall that A is an *almost subset of B* (denoted by $A \subseteq^* B$) if $A \setminus B$ is finite).

Problem

Are there linearly ordered splitting families?

Note that if \mathcal{S} is linearly ordered splitting family then:

- \bigcirc S does not have a smallest or largest element.
- There are no inmmediate succesors, in particular it can not be a well order.

We can construct such families assuming the Continuum Hypothesis.

Definition

Let κ and λ be two regular cardinal numbers. We say $\mathcal{G} = (\mathcal{A}, \mathcal{B})$ is a (κ, λ) -pregap if the following holds:

- **(** \mathcal{A} is an increasing family (under the almost inclusion) of size κ .
- **2** \mathcal{B} is a decreasing family (under the almost inclusion) of size λ .
- If $A \in A$ and $B \in B$ then $A \subseteq^* B$.

A pregap $\mathcal{G} = (\mathcal{A}, \mathcal{B})$ is a *gap* if it *can not be filled* (i.e. there is no $X \in [\omega]^{\omega}$ such that $A \subseteq^* X \subseteq^* B$ for every $A \in \mathcal{A}$ and $B \in \mathcal{B}$). The construction (under CH) of a linearly ordered splitting family can be easily done with the following result:

Lemma (Rothberger, Hausdorff)

There are no (κ, λ) -gaps where $\kappa, \lambda \in \{0, 1, \omega\}$.

< ロ > < 同 > < 三 > < 三

Antonio Aviles and Felix Cabello constructed interesting Banach spaces assuming the existence of a linearly ordered splitting family. This lead them to ask the following:

Problem (Aviles, Cabello)

Is the existence of a linearly ordered splitting family consistent with the failure of CH?

Frequently, a "CH construction" can be realized assuming that certain cardinal invariant is equal to c (the cardinality of 2^{ω}). In this case the natural cardinal invariant would be the following:

Definition

Let j be the least κ for which there is a (κ, κ) -gap.

Obviously, a linearly ordered splitting family can be constructed assuming $\mathfrak{j}=\mathfrak{c}.$ However we did not get anything new:

Theorem (Hausdorff)

There is a (ω_1, ω_1) -gap (i.e. $\mathfrak{j} = \omega_1$)

Hence, a straightforward generalization of the previous argument can not be done if $\mathfrak{c}>\omega_1.$

A natural attempt to solve the problem, would be to construct a Sacks indestructible linearly ordered splitting family. However, this idea is also doom to fail because of the following result:

Theorem

Every linearly ordered splitting family has size continuum.

Definitions

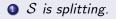
- Let ${\mathcal S}$ be a linearly ordered family and ${\mathcal G}=({\mathcal A},{\mathcal B})$ a pregap.
 - We say G is a *tight pregap* if there is no X ∈ [ω]^ω such that the following holds:
 - $X \subseteq^* B$ for every $B \in \mathcal{B}$.
 - **2** $X \cap A$ is finite for every $A \in \mathcal{A}$.

2 We say \mathcal{G} is a *cut of* \mathcal{S} if (\mathcal{G} is a pregap) and $\mathcal{S} = \mathcal{A} \cup \mathcal{B}$.

We can then prove the following:

Lemma

Let S be a linearly ordered family. The following are equivalent:



2 Every cut of S is a non tight pregap.

Theorem

There is a linearly ordered splitting family in the Cohen model.

To prove the previous result we need the following definition:

Lemma

Let $\mathcal{G} = \langle \mathcal{A}, \mathcal{B} \rangle$ be a pregap. We define the forcing $\mathbb{P}(\mathcal{G})$ as the set of all $p = (s_p, L_p, R_p)$ where $s_p \in [\omega]^{<\omega}$, $L_p \in [\mathcal{A}]^{<\omega}$, $R_p \in [\mathcal{B}]^{<\omega}$ and $\Delta(L_p, R_p) = \{\Delta(\mathcal{A}, \mathcal{B}) \mid \mathcal{A} \in L_p \land \mathcal{B} \in R_p\} \subseteq \max(s_p)$. If $p, q \in \mathbb{P}(\mathcal{A}, \mathcal{B})$ then $p \leq q$ if the following holds: **1** $s_q \sqsubseteq s_p, L_q \subseteq L_p, R_q \subseteq R_p$. **2** If $\max(s_q) < i \leq \max(s_p)$ then: **3** If $i \in \bigcup L_q$ then $i \in s_p$. **3** If $i \notin \bigcap R_q$ then $i \notin s_p$. Regarding the non existence we have the following:

Theorem

 $\mathsf{OCA} + \mathfrak{p} > \omega_1$ implies that there are no linearly ordered splitting families.

We know that $\mathfrak{p} > \omega_1$ is not enough for the following result, but we do not know if OCA suffies to destroy such families.

Problem

Does OCA implies that there are no linearly ordered splitting families?